CEREBRAL LOCALIZATION

PRESENTED BY: HARSHIT MISHRA

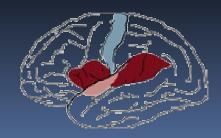
Definition

- 1. The diagnosis of the location in the cerebrum of a brain lesion, made either from the signs and symptoms manifested by the patient or from an investigation modality.
- 2. The mapping of the cerebral cortex into areas, and the correlation of these areas with cerebral function.

Functional Localization of Cerebral Cortex --- HISTORY

❖ Phrenology of Gall (1781) and Spurzheim

Phrenology: Analysis of the shapes and lumps of the skull would reveal a person's personality and intellect. Identified 27 basic faculties like imitation, spirituality



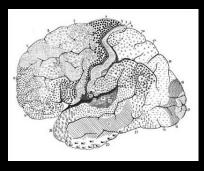
❖ Paul Broca (1861): Convincing evidence of speech laterality

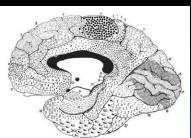
"Tan": Aphasic patient

- **❖ Carl Wernicke** (1874):
 - Temporal lesion disturbs comprehension.
 - Connectionism model of language
 - Predicated conduction aphasia

Experimental evidences

Fritsch and Hitzig (1870) --- motor cortex

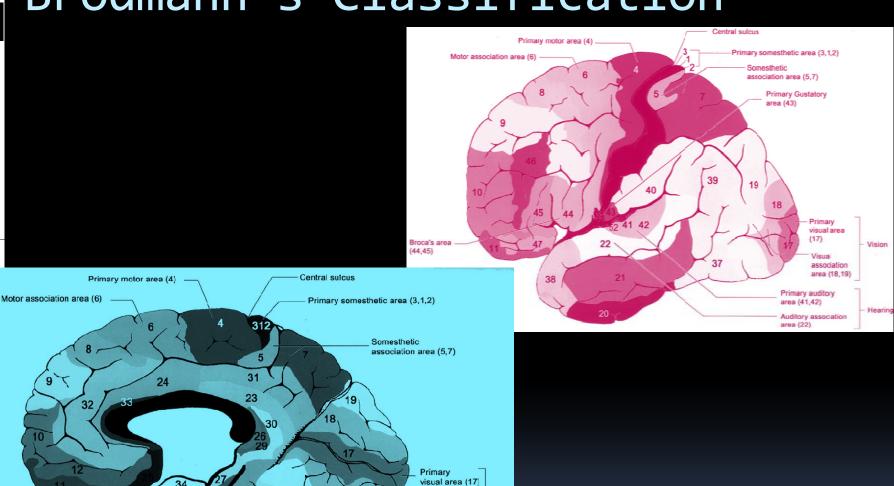

von Gudden (1870) ---- visual cortex


Ferrier (1873) ---- auditory cortex

BASED ON CYTOARCHITECTONIC STUDIES

♦ Korbinian Brodmann (1868-1918):

- ➤ Established the basis for comparative cytoarchitectonics of the mammalian cortex.
- > 47 areas
- > most popular



- ❖ Vogt and Vogt (1919) over 200 areas
- ❖ von Economo (1929) -- 109 areas

HARVEY CUSHING:- Mapped the human cerebral cortex with faradic electrical stimulation in the conscious patient.

 PENFIELD & RASMUSSEN:- Outlined the motor & sensory Homunculus.

Brodmann's Classification

Visual association area (18,19)

37

Primary Olfactory area (34)

vision

Cerebral Dominance (Lateralization, Asymmetry)

Dominant Hemisphere (LEFT)

Language

speech, writing

Analytical and mathematical skills

Temporal sequencing of stimuli

Non-dominant Hemisphere (RIGHT)

Spatial Perception (3D subject)

Singing

Playing musical instrument

METHODS

- I. CLINICAL
- II. ELECTROPHYIOLOGICAL
- III. RADIOLOGICAL
- IV. INTRA-OPERATIVE
- V. EXPERIMENTAL

CLINICAL

- Lobar signs
- Clinical syndromes
- Aphasia
- Apraxia
- Agnosia
- Anopia

- Impaired memory
 - Recent
- Procedural defects
- Emotional lability
- Senseless joking
- Abulia

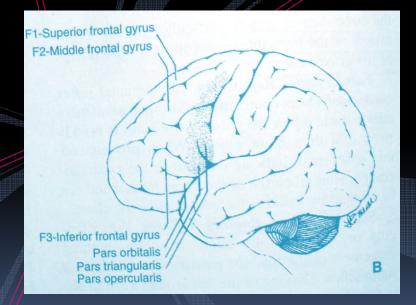
Crying: (Lesions of bilateral internal capsule+ basal ganglia; substantia nigra, cerebral peduncles, and hypothalamus; corticobulbar fibers,)

Mr. Phineas Gage

□ Alien Hand Syndrome

- Hand contra lateral to lesion performs purposeful movements against will of patient
- Lesion in Dominant Frontal Lobe (SMA, anterior cingulate gyrus and medial prefrontal cortex
- Magnetic Gait
 - Mesial Frontal lesion
- Salutatory Seizure
 - Origin in SMA
- ☐ Akinetic Mutism
 - B/L Mesial Frontal Lesion
- Paratonia
- Primitive Reflexes

□ Pseudobulbar Palsy


Opercular Syndrome

□ Broca's Aphasia

- Lesions in Left frontoparietal opercular
- region
- Speech and writing are impaired
- Telegraphic speech

Pure Agraphia

- Affection of the posterior part of the
- Left second frontal gyrus
- (Exner's area)

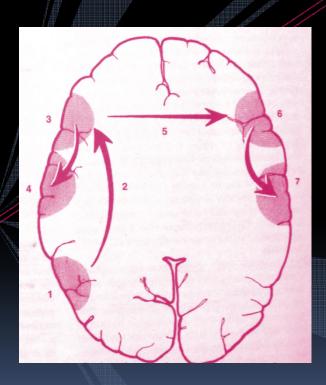
- Executive Function Loss
 - I. Orbitofrontal syndrome
 - Disinhibited
 - Impulsive
 - Poor judgment and insight
 - II. Frontal convexity syndrome
 - ✓ Apathetic
 - Aggressive
 - Poor word list generation
 - III. Medial frontal syndrome
 - Akinetic
 - ✓ Incontinent

Parietal Lobe

Elemental Somatosensory Disturbances

- Pseudothalamic sensory syndrome
 - Lesion of parietal operculum, posterior insula
 - Impairment of elementary sensation
- Cortical sensory syndrome
 - Astereognosis,
 - Graphesthesia, position sense impaired

Parietal Lobe


<u>Disturbances of Body Schema</u> and <u>Spatial Relationships</u>

- Common with Right Hemisphere Lesions
- Anosognosia
- Phantom limb
- Constructional apraxia
- Geographical apraxia
- Dressing apraxia
- Hemineglect

Dressing apraxia

Disturbances of Sensorimotor Integration and Movement Execution

- Ideomotor apraxia
 - Failure to perform a pantomime
 - Most severe with lesions in the region of Left intraparietal sulcus
 - Left frontal lesions
 - buccofacial apraxia, right hemiparesis, and left limb apraxia
 - Left parietal lesions
 - buccofacial apraxia and bilateral limb apraxia

Temporal lobe

Hearing loss

- Auditory agnosia
 - Hearing intact
 - Sounds not recognized
 - Temporal lobe damage U/L or B/L
- Pure word deafness
 - B/L Temporal Cortical Lesion
- Left Hemispheric Damage Impaired Discrimination of Words, lyrics
- Right Hemispheric Damage Impaired Discrimination of Musical sounds

Temporal lobe

- Complex hallucinations
 - Otoscopic phenomena
 - Illusory phenomena (micropsia, metamorphopsia)
- Uncinate fits
 - Olfactory hallucinations
- Gustatory Hallucinations
 - Temporo Parietal Seizures
- Déjà vu, jamais vu, Déjà vecu, jamais vecu
 - Neocortex of temporal lobe
- CPS

Aphasias

Sensory Language Area (Wernike's area) ----22, 39, 40

Receptive Aphasia - area 22

- defect in comprehension
- good spontaneous speech

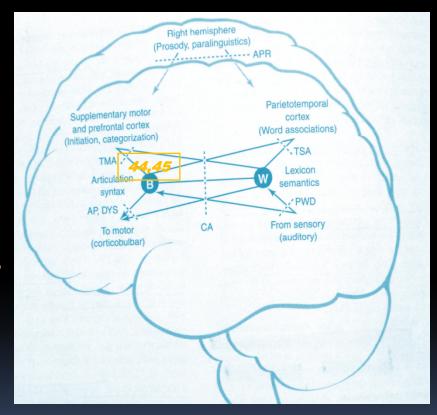
Anomic Aphasia - area 38, 20, 21

word finding difficulty

Jargon aphasia

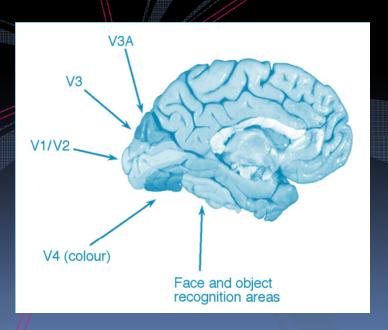
- •fluent, but unintelligible jargon
- 39 (supramarginal gyrus), 40 (angular gyrus)

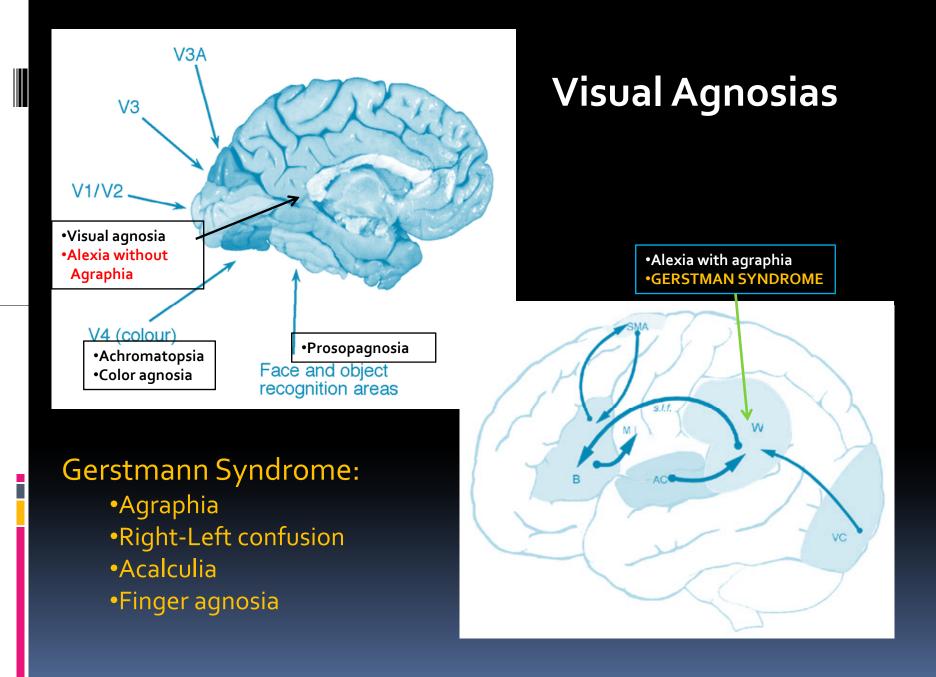
Aphasias


Superior Longitudinal Fasciculus

- Conduction Aphasia
 - good comprehension, good spontaneous speech
 - poor repetition, poor response

Motor Language Area (Broca's area) --- 44, 45

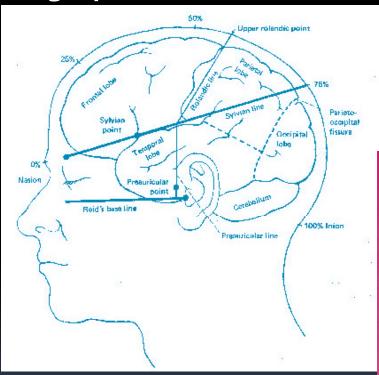

Motor Aphasia


 good comprehension, no speech

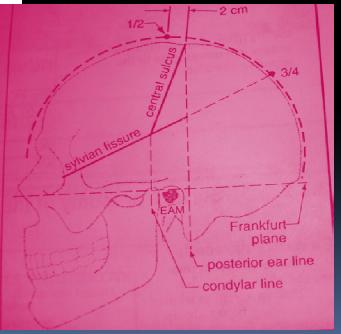
Occipital Lobe

- Simple Hallucinations
 - Infero Medial Occipital Disease
 - Migraine (fortification)
 - Seizures (multicolored)
- Hemianopia with/without Macular Sparing
 - Congruent

ELECTRPHYSIOLOGICAL

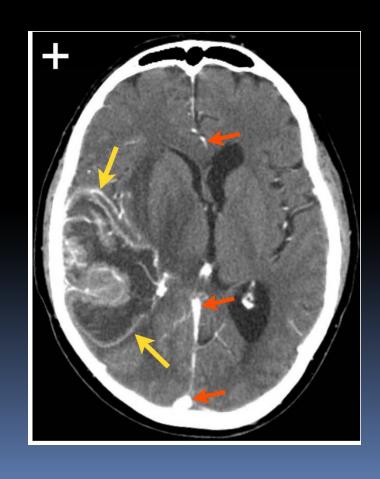

ELECTROENCEPHALOGRAPHY (EEG)

ELECTROCORICOGRAPHY (ECoG)



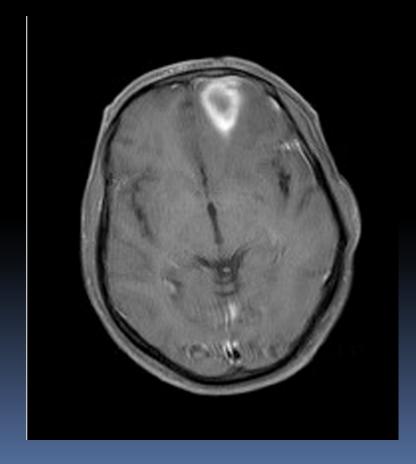
RADIOLOGICAL

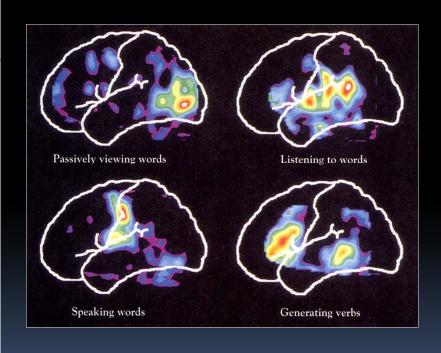
> Plain radiograph



TAYLOR HAUGHTON LINES

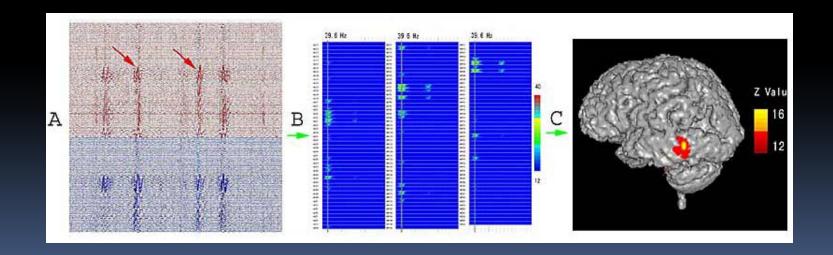
RADIOLOGICAL


CT SCAN



RADIOLOGICAL

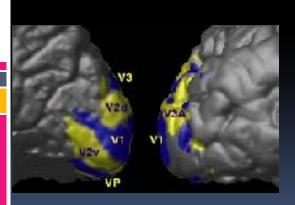
MRI

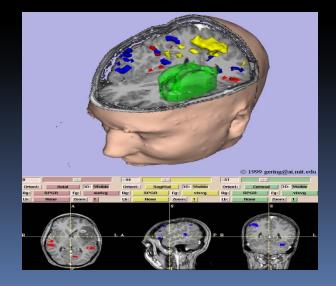

Positron Emission Tomography (PET)

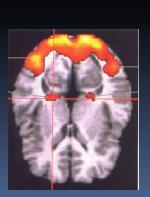
- H₂ ¹⁵O PET
 - Hemodynamic changes
- FDG PET
 - Cerebral Metabolism

MAGNETOENCEPHALOGRAPHY (MEG)

- Noninvasive
- Records Magnetic field changes due to neuronal activity

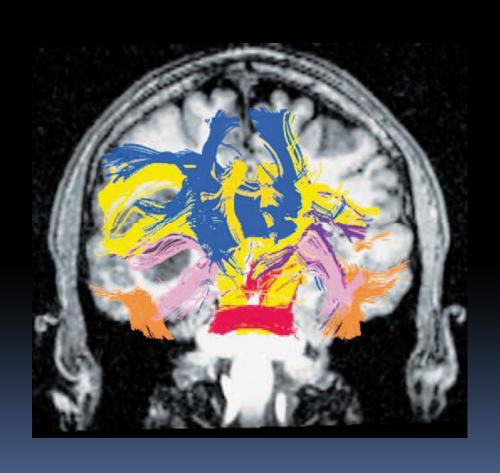



Functional MAGNETIC RESONANCE IMAGING (fMRI)


Based on the concept of Blood Oxygenation Level-dependent Contrast (BOLD)

- Oxyhemoglobin is diamagnetic (like biological tissue).

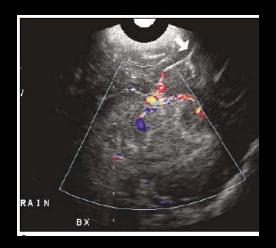
Deoxyhemoglobin (dHb) is paramagnetic induce susceptibility effect around dHb



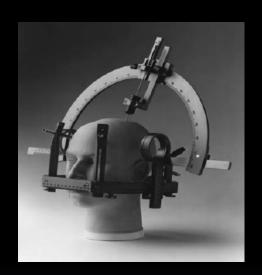
Anisotropic Diffusion Tensor Imaging (Tractography)

Direction of maximum diffusivity of water corresponds to axis of White Matter tracts

- Displacement
- •Edema
- •Infiltration
- Destruction


INTRAOPERATIVE LOCALIZATION IN NEUROSURGERY

INTRAOPERATIVE ULTRASOUND (IOUS)



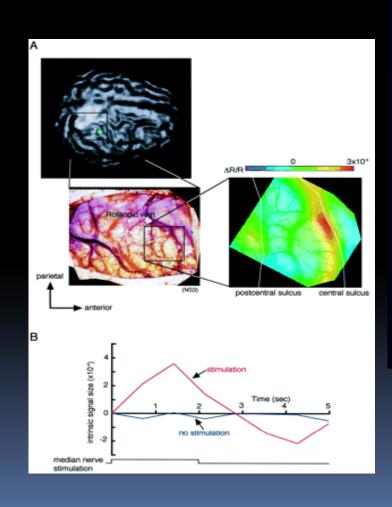
- **❖** Sonographically Guided Procedures in the Brain
- Intraoperative Doppler Ultrasound
- ❖3-D Transcranial Ultrasound
- Contrast Enhanced Transcranial Ultrasonography

STEREOTACTIC LOCALIZATION:

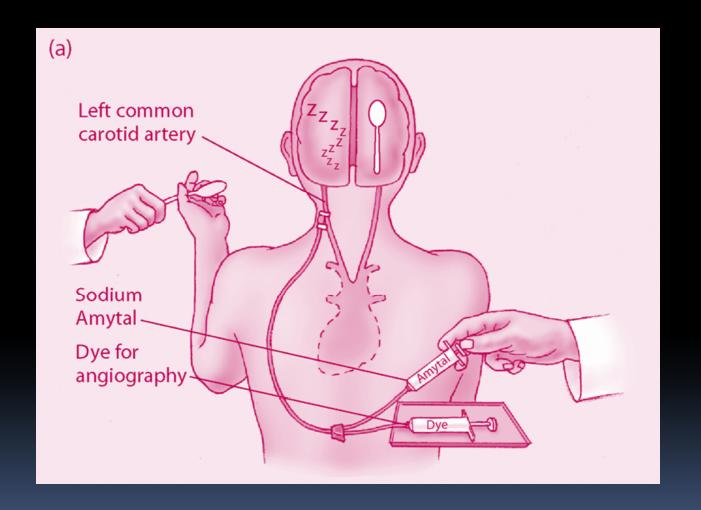
□ FRAME BASED

□ FRAMELESS

<u>Intraoperative / Mobile Ct Scan :</u>



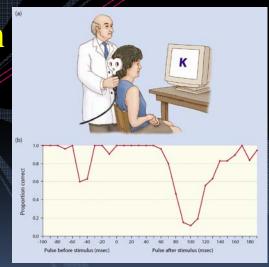
Intraoperative MRI:


Also k /a "BRAINSUITE"

CORTICAL MAPPING:

Cortical Surface Mapping

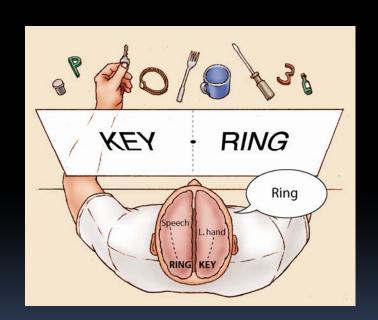
WADA Procedure


EXPERIMENTAL

▶Single Unit Recording

- > Animal studies
- > Advantage: great spatial and temporal resolution
- > **Disadvantage**: sampling only a very small fraction of a functional neural system

>Transcranial Magnetic Stimulation


- Coil placed over target brain region
- > Lesion: strong field
- > Excitation: mild field
- Cognitive failures recorded

>Optical imaging

Split-brain

Corpus callosotomy

Utility of Cerebral Localization

- 1. Pre- operative Planning
- 2. Create a Road Map of Brain Depicting Eloquent "No- Go" areas as well as potential functional targets
- 3. Increasing precision of resection
- 4. Development of Minimally invasive techniques
- 5. Recognition of concept of plasticity of brain

THANKYOU